
science for a changing world

Geological Society of America Rocky Mountain Sectional Meeting, April 22, 2010, Rapid City, South Dakota

James B. PACES, Sco  LUNDSTROM,  Richard MOSCATI, and Jeffrey PIGATI;  U.S. Geological Survey, Denver, CO
TIMING AND SOURCES OF POSTGLACIAL GROUNDWATER DISCHARGE NEAR THE GLACIAL LIMIT OF THE JAMES LOBE OF THE LAURENTIDE ICE SHEET, SOUTH DAKOTA

ABSTRACT
Deposits of tufa, travertine, and carbonate cements are scattered north of the Missouri River 

within 20 km of the known glacial limit of the James Lobe of the Laurentide continental ice 
sheet.  These deposits drape and cement late Wisconsin glacial sediments and are being studied 
to investigate potential constraints on conceptual models of groundwater flow associated with 
glacial advance and retreat.   Five study sites are distributed on the south and west sides of the 
James Lobe near Yankton and Pierre, respectively.   Modern springs with high dissolved-ion 
contents (conductivities >2000 µS/cm) discharge at or near all sites.   Deposits near Yankton are 
poorly exposed in the eastern alluvial scarp of the James River valley and consist of calcite- 
cemented glacial sediment and porous tufa cut by banded travertine veins.   Modern springs 
have δ2H and δ18O values (-63 and -8.8‰, respectively) that are consistent with recharge of 
modern precipitation in shallow aquifers, along with elevated U concentrations (19–31 ppb) 
indicative of oxidizing conditions.   Deposits near Pierre are better exposed and include a variety 
of tufa with abundant iron and manganese oxides.  Springs associated with these deposits have 
much lower δ2H values (-129 to -139‰) and indicators of reducing conditions including 
abundant Fe-Mn hydroxide precipitates and relatively low U concentrations (0.6-1.4 ppb).   These 
springs have affinities with deep artesian groundwater with Pleistocene isotopic signatures and 
likely reflect upward leakage into shallow aquifers. 

Yankton-area travertines have high U/Th and precise U-series ages ranging from 13.0 to 
10.5 ka for main-stage vein material with late-stage vug-fillings as young as 5.8 ka.   Both initial U 
isotopic compositions and δ13C and δ18O values vary slightly but systematically with age. 
Nevertheless, all calcite δ18O values are consistent with modern discharge rather than with 
values expected for glacial meltwater.   Dating of Pierre-area tufas is complicated by lower U 
concentrations and U/Th due to high Fe-Mn oxide abundances, but also indicate late-Pleistocene 
to Holocene ages.   Calcite δ18O values in these materials show a much larger range and are 
consistent with formation from mixtures of both deep and shallow groundwater sources.

INTRODUCTION
The James Lobe of the Laurentide ice sheet occupied much of the eastern half 

of South Dakota north of the Missouri River during parts of the late 
Pleistocene (Fig. 1).   The last advance occurred as recently as 14 to 15 ka with 
ice occupying the James River lowland as far south as the Missouri River.

Groundwater discharge deposits are present in several places within the limits 
of ice cover and present an opportunity to investigate relations between 
groundwater flow and the timing of advances and retreats of continental 
glaciers.  

Deposits are predominantly calcite allowing determination of ages by U-series 
and radiocarbon dating methods and isotopic compositions (234U/238U, 
δ18O, δ13C, 87Sr/86Sr), which can be used to evaluate the compositions of 
groundwater at the time of discharge.

Because modern springs are present at all sites, deposits provide a means of 
seeing how groundwater flow systems have evolved over time.

Determine a geochronological framework for discharge deposits

Evaluate the likely water sources for deposits (glacial meltwater, local ground- 
water,  regional groundwater)

Evaluate  post-glacial changes in groundwater compositions 

Evaluate the role of the James Lobe ice sheet on groundwater dynamics

OBJECTIVES

SAMPLE SITES AND MATERIALS
Yankton Area; Southern end of James Lobe

   • Sees spring mound (NE Jim River road)

Several discharge areas with sca ered outcrops of 
carbonate-cemented gravelly ll cut by numerous 
coarse, sparry calcite veins.

Geologic rela ons with associated glacial deposits 
and underlying bedrock are poorly exposed. 
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Pierre Area;  West side of James Lobe

   • Peoria spring mound near Oahe Dam)
   • Bee spring mound (near Canning, SD)

Spring mounds are several meters thick and 
consist of crudely layered, porous to dense tufa 
with abundant Fe-Mn oxides.

Geologic rela ons with associated lls and 
underlying Pierre Shale are fairly well exposed. 

South Sees spring deposits
outcropping on ridgeline

Peoria spring deposits
outcropping along Lake Oahe shoreline Satellite map of

Sees spring area,
 Yankton Co.

Medicine Knoll Creek Valley

Bee Spring, Hughes Co.

Sees Spring Deposits:  Carbonate vein material has high U
contents (3–6 µg/g) and U/Th concentration ratios (>100).  

• Resulting 230Th/U ages are analytically robust and range  
between 15 and 5.8 ka, with ±~0.2 ka uncertainties.  

• Median age for 21 analyses of dense vein material = 11.4 ka
with 95% confidence interval of 11.1 to 12.3 ka.  

 • Late-stage pendant-like material deposited in open vugs 
have younger ages between 5.8 and 8.1 ka

Pierre-Area Deposits:  Porous to dense tufas have low U contents 
(<0.3 µg/g) and U/Th concentration ratios (<10).  

• Resulting 230Th/U ages require large corrections for detrital
230Th contents and have large propagated uncertainties 
(typically 1.5–3 ka).  

• Post-depositional U mobility is present in many samples.

• Best estimates for 230Th/U ages range from 7.9 to 13.7 ka.  
Median age for 10 analyses of best-behaved material is 
11.1 ka with 95% confidence interval of 9.3 to 12.8 ka. 

Radiocarbon Results:  
Sees Spring:  14C used to test age of matrix not datable

by U-series.  Reservoir effect on 14C ages were eval-
uated by analyzing clean vein material with known 
U-series ages.  Resulting ages for matrix are similar
to ages of cross-cutting veins (12.5–12.6 ka)

Peoria Spring:  Terrestrial snails present in fine-grained
sediment at base of spring mound and in lower-
most tufas.  One shell dated by 14C yielded a calib-
rated age of 24.5 ±0.4 ka.  Corrections for potential reservoir effects have not been evaluated yet.

GEOCHRONOLOGICAL FRAMEWORK
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RADIOGENIC AND STABLE ISOTOPE COMPOSITIONS
Isotopic evolution at Sees Spring:

   Oldest calcite has highest initial 234U/238U AR.  Younger material has 
small, but significant, differences forming a trend toward modern 
groundwater values.  

   Similar trends with time between oldest calcite and modern water are 
observed for δ87Sr.  Values are broadly consistent with glacial till 
sources rather than seawater or Dakota Sandstone sources.

   Oldest calcite has lowest δ13C and highest δ18O.   The 2‰ shift in 
δ18O data is consistent with a ~10°C shift in mean T between 
~13 to 6 ka.   δ13C is consistent with either (1) a shift from early C3 
plants (trees & shrubs) to later C4 plants (grasses), or (2) increasing 
amounts of C from marine sources with time.   Sr data to not support 
latter hypothesis.

Isotopic Compositions of Pierre-area discharge deposits:

   Low U contents and U/Th preclude precise dating and determination 
of initial 234U/238U AR.  14C & Sr analyses are pending.

   Calcites have a more limited range of δ13C than Sees spring calcites 
with δ13C values closer to marine signatures.

   δ18O values for Bee calcites are compatible with modern spring 
water (δ18O=-17.3‰) and depositional temperatures between 
0 and 12°C.   δ18O values for Peoria calcites are not consistent 
with water discharging from modern Peoria spring and require 
less negative δ18O values (e.g., ~-12‰ instead of -18‰).   
Data suggest that glacial meltwater was not present in the aquifer 
discharging at 12 to 14 ka.

Paleospring deposits record a history of groundwater discharge interpreted 
to have initiated after final glacial retreat:

• ~13 to 14 ka in Yankton Co.; coeval or somewhat earlier in Pierre area

Yankton-area deposits (Sees springs) likely have a shallow source of 
groundwater within late-Wisconsin-aged glacial deposits.  Groundwater 
compositions evolved in response to post-glacial environmental changes.

Pierre-area deposits (Peoria, Bee, Hiddenwood springs) likely have a deeper 
groundwater source (Dakota or Minnelusa-Madison aquifers) that may or 
may not initially have had a meltwater component.  At some time after 
~11 ka, recharge that entered aquifers farther to the west (?) during the 
Pleistocene reached discharge areas.

CONCLUSIONS
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Sources of modern groundwater:  
     • Shallow aquifers in glacial deposits
     • Shallow bedrock aquifers (Niobrara

    & Dakota)
     • Deep bedrock aquifers (Pz brines) 
     • Surface water 

Additional Sources of paleo spring water
     • Recharge from glacial meltwater (basal flow, pro-glacial lakes)

All springs discharge from glacial deposits, but may represent upward leakage from bedrock aquifers.

• Sees spring waters are more consistent with post-glacial (heavy δ2H & δ18O), locally recharged, oxidizing water 
that obtained Sr from flow within tills (Lower James-Missouri aquifer; Bugliosi, 1986)

• Peoria spring water is more consistent with glacially recharged (light δ2H & δ18O), reducing water that may have 
Sr from Permian evaporites (δ87Sr of ~-1.5 to -2.0‰; e.g., Minnelusa-Madison aquifer; Hamilton, 1986)

• Bee & Hiddenwood springs are consistent with mixtures of shallow and deep groundwater

SOURCES OF WATER
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Compositions of modern spring discharge:


